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Abstract

Geometric simpli�cation is a well-known technique for simplifying complex geometric models.
Previous work in this area in the past has consisted primarily of lossless compression and error-
bounded simpli�cation techniques. By removing such constraints, we can anisomorphically reduce
a model's representation|cheaply and e�ciently|down to as little as 0% of its original size. We
perform such simpli�cation in two stages, which can be employed independently or combined for
maximum e�ect. The �rst stage, the photoreplication stage, uses only items commonly found in the
home or o�ce, and is highly scalable. The second stage (called the �rst stage for historical reasons)
takes advantage of idle distributed resources to further simplify a model. We briey describe our
implementation, and emphasize the ease with which it can be integrated into existing systems.

Keywords: geometric simpli�cation, distributed processing, triangulation, buzzwords, photoreplication,
anisomorphic compression
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1 Introduction

Geometric simpli�cation is a well-known technique for simplifying complex geometric models. Previous
work in this area has consisted of methods which bound the error between the original and simpli�ed
model [3], as well as those that implement lossless or error-bounded compression [1].

Our research shows that removing such relational constraints between the original and simpli�ed
model generates many new possibilities for simpli�cation. We name this class of functions anisomorphic
simpli�cation, as they need not preserve the original topology. Experiments have shown that two such
techniques stand out as being e�cient in computation, simple to implement, and enjoyable to watch
being employed; and further, that the use of these methods in successive stages generates excellent
pictures.

2 Photoreplication Stage

In the photoreplication stage, we anisomorphically simplify the model through the use of an input-output
feedback loop. The point set for the model is printed to paper, then photocopied n times with a paper
duplicator, and then input back to digital format with what we call a scan-converter. If the number of
points in the original model is P0, and the loss-factor of printing, duplicating, and scan-conversion are
P1, P2, and P3 respectively, then the number of points in the simpli�ed model is

P
0 = P0 � P1 � P

n

2
� P3

The simpli�cation is easily scalable, then, by the purchase of additional duplication devices. It is
in fact possible to simulate a n-tier photoreplication process with a single duplicator; we state without
proof [2] that this produces results within human visual tolerance. The method does necessitate a
random image rotation at each stage, to reduce the development of duplicator artifacts.

The photoreplication stage is necessarily limited by the dimensionality of the print medium, at
present 2; the new model must be generated from the points through one of several popular over-the-
counter triangulation methods [4]. Later in this paper we discuss planned extensions to overcome this
dimensionality problem.

3 First Stage

The �rst stage anisomorphically simpli�es by use of distributed computing resources, taking advantage
of known wide-area network properties such as congestion and packet loss [5]. The model is split into
lowest-level primitives, such as points or triangles, and each primitive is wrapped with a unique identi�er
in a separate unreliable UDP packet. The packets are routed through each of the available workstations
in turn, while network congestion eliminates some random subset of primitives. The host machine then
reconstructs the simpli�ed model from the reduced subset, using the unique identifers to facilitate proper
reordering.

The loss-level of the network is the most important factor in determining loss in this stage, to wit:

P
0 = P0 � �

where � is the network lossiness factor. The lossiness is determined by network congestion, individual
machine loads, sysadmin whim, temperature, and whether anyone has tripped over the ethernet cables
recently.
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Figure 1: Bunny model: original, simpli�cation stage 1, and simpli�cation stage two

4 Implementation and Results

We were surprised, for the photoreplication stage, how particularly acute were the idiosyncracies of each
duplicator and scan-converter. Extensive testing, via photoduplication of corporeal models, showed
that some duplicators were unsuitable for our simpli�cation method. Though our research assistants
preferred the self-collating model, we eventually settled upon a duplicator whose �ngerprint-marred glass
most e�ciently simpli�ed the model. For scan-conversion, we employed a popular hand-held half-page
device that gave the highest probability of error. For all of the color images, we simulated a 10-tier
photoreplication process with a single duplicator and scan-converter, employing the method discussed
in Section 2.

In our original implementation, the �rst stage used a cluster of twenty SGI O2 workstations, each
with R10000 processors and 512MB of memory, connected by a 100 Mbit ethernet network. We intro-
duced random loss by inviting local high-school students to use our machines in a multi-player Quake1

tournament, thereby overloading the local network. Unfortunately, we were unable to duplicate these
conditions for time trials as other laboratory projects took \priority" when this deadline approached.
We simulated our previous experiments with four 486-DX PCs, a Linux box, and two Palm Pilots2

connected to the Linux machine via Pilot modems.

Figure 4 shows the combined e�ect of the photoreplication and �rst stages, which took approximately
two hours to compute. The author was fortunate to win the �rst match, 20 to 14, and lost the remaining
three to worthy opponents. The table in Figure 3 shows the number of points in each model, given each
combination of simpli�cation methods.

5 Conclusion and Future Work

We have demonstrated and implemented two distributed and hierarchical geometric simpli�cation pro-
cesses, which actually see improved performance under severe network and processor load. These algo-
rithms are easy to implement or integrate into existing code base; in fact, developing a full system only
took a few hours, including the design and fabrication of special-purpose photoreplication hardware.

We look forward to some improvements in the current system. For instance, the photoreplication

1Quake is a trademark of IdSoftware
2Palm Pilot is a trademark of 3Com
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Figure 2: Teapot model: original, simpli�cation stage 1, and simpli�cation stage 2. Original is on the
left.

simpli�cation bunny teapot cube
method model model model
none 8145 1178 8
photoreplication 2142 352 4
distributed 6332 953 5
combination 674 174 1

Figure 3: Simpli�cation results: each entry is number of remaining points.

stage currently projects 3-D point sets into two dimensions. We are working on a method to choose
the projections properly to facilitate reconstruction of the original three-dimensional position of points
remaining in the simpli�ed version. We hope to incorporate color into the entire photoreplication stage,
though we hesitate to postulate about the e�ects of such a major step.

References

[1] Fowler, J., and Yagel, R. Lossless compression of volume data. In 1994 Symposium on Volume
Visualization (Oct. 1994), A. Kaufman and W. Krueger, Eds., ACM SIGGRAPH, pp. 43{50. ISBN
0-89791-741-3.

[2] Heckbert, P. S. Ray tracing Jell-O brand gelatin. In Computer Graphics (SIGGRAPH '87
Proceedings) (July 1987), M. C. Stone, Ed., vol. 21, pp. 73{74.

[3] Kalvin, A. D., and Taylor, R. H. Superfaces: Polygonal mesh simpli�cation with bounded error.
IEEE Computer Graphics and Applications 16, 3 (May 1996), 64{77. ISSN 0272-1716.

[4] Mucke, E. Shapes and Implementations in Three-Dimensional Geometry. PhD thesis, University
of Illinois at Urbana-Champaign, 1993.

[5] Peterson, L., and Davie, B. Computer Networks. Morgan Kaufman, 1996.

4


